

1

Inertial control of a DFIG based WPP considering the kinetic energy of the wind generators

22 May 2014 Jinsik Lee and **Yong Cheol Kang** Chonbuk National University, Korea

funded Advanced Research Center (ERC) Chonbuk National University Wind energy Grid-Adaptive Technology Research Center

CONTENTS

1. Power system operation

2. Frequency control of the power system

3. Inertial control of a wind power plant

4. Case studies

5. Conclusions

Power system or power grid

Reciprocally Interdependent system

Operation of a power system: Balance between generation and consumption

ENERGY/MONGOLLA®

Synchronously operating power system

ENERGY/MONGOLLA®

Statistics of the Korean power system

World ranks of installed capacity & wind generation (GW)

Ranks	Country	GDP Ranks	Capacity	Wind Generation	Ranks	Country	GDP Ranks	Capacity	Wind Generation
1	USA	1	1,025	60.0 (2)	8	France	5	119	7.6 (8)
2	*: China	2	878	75.3 (1)	9	Brazil	7	106	2.5 (15)
3	Japan	3	285	2.6 (13)	10	Italy	9	101	8.1 (7)
4	Russia	8	225		11	Spain	13	96	22.8 (4)
5	ان India	11	189	18.4 (5)	12	UK	6	88	8.3 (6)
6	Germany	4	147	31.3 (3)	13	Korea	15	81	0.5 (27)
7	Canada	10	132	6.2 (9)	14	() Mexico	14	59	1.2 (22)

Source: CIA the world Factbook 2012, USA

World ranks of electricity consumption (TWh) & wind energy penetration

Ranks	Country	GDP Ranks	Consumption	WEP(%)	Ranks	Country	GDP Ranks	Consumption	WEP(%)
1	*: China	2	4,693	2.0	6	Germany	4	510	7.7
2	USA	1	3,889	3.5	7	Canada	10	505	2.8
3	Japan	3	860	0.5	8	Korea	15	455	0.2
4	Russia	8	808		9	France	5	451	
5	€ India	11	638		10	Brazil	7	438	

Source: CIA the world Factbook 2012, USA

Every Korean Income: 60\$/day Energy: 10\$/day Electrical energy: main cause of conversion loss
60B\$: 33% of imported primary energy price
100 Mtoe: 36% of total primary energy

MEST - funded Advanced Research Center (ER

Energy security in Korea

energy Grid-Adaptive Technology Research Center

9

2.5 GW Korea's ongoing offshore WPP project

ENERGY/MONGOLLA®

Korea's policy on renewable energy

Introduction of Renewable Portfolio Standard (RPS)

Year	'12	'13	'14	'15	'16	'17	'18	'19	'20	'21	'22
Share (%)	2.0	2.5	3.0	3.5	4.0	5.0	6.0	7.0	8.0	9.0	10.0

2020 Targets for RE and WE of Korea

In 2010: RE (5.9TWh, 1.3% of EE), WE (13% of RE)

By 2020:

RE (54TWh): 8.6% of EE (631TWh)

•WE (22TWh): 40% of RE, 3.4% of EE

10GW of WG

Source: The 6th basic plan of electricity supply, MKE, Korea

GA Wind energy Grid-Adaptive Technology Research Center

Frequency control of a power system

Frequency control

Recovers the reduced frequency to the nominal value when a disturbance occurs

	Time frame	Features
Inertial response	2–3 sec.	Naturally releasing the kinetic energy, Uncontrollable
Governor response (Primary response)	10–60 sec.	Droop control using the spinning reserve
AGC response (Secondary response)	1–10 min.	Re-dispatching from the SO

energy Grid-Adaptive Technology Research Center

Frequency nadir

- Criteria for the system reliability
- Under Frequency Load Shedding: sheds 6% of load in every 0.2 Hz from 59.0 Hz
- Disconnection of SGs (from 58.5~57.5Hz)

ENERGY/MONGOLLA

Primary control of a synchronous generator

13

Variable speed wind generator (WG)

Configuration of variable speed WG

Doubly fed induction generator (DFIG)

Fully-rated converter WG (FRC)

Maximum power point tracking (MPPT) operation

Keeps the rotor speed to the optimum value

 \rightarrow only depending on the wind condition

onbuk National University nd energy Grid-Adaptive Technology Research Center

Frequency control in a power system with wind

Chonbuk National University Wind energy Grid-Adaptive Technology Research Center

Inertial control of a wind power plant

Conventional inertial control 1

Inertial control using the rate of change of frequency (ROCOF) J. B. Ekanayake, L. Holdsworth, and N. Jenkins, "Control of doubly fed induction generator (DFIG) wind turbine," *IEE, Power Eng.*, vol. 17, no. 1, pp. 28–32, Feb. 2003.

ENERGYMONGOLLA

Conventional inertial control 2

Inertial control using ROCOF & Droop

- G. Ramtharan, J. B. Ekanayake, and N. Jenkins, "Frequency support from doubly fed induction generator wind turbines," *IET, Renew. Power Gen.*, vol. 1, pp. 3-9, 2007.
- Z. Zhang, Y. Sun, J. Lin, and G. Li, "Coordinated frequency regulation by doubly fed induction generator-based wind power plants," *IET Renew. Power Gener.*, vol. 6, no. 1, Jan. 2012, pp. 38–47.

Chonbuk National University

Wind energy Grid-Adaptive Technology Research Center

Assignment of control gain

• Droop (R_i)

Control gain of the frequency deviation loop for inertial control

 f_{svs}

Droop assignment considering the kinetic energy

Assigning smaller droop to the WG operating at a higher rotor speed

$$\Delta \overline{P}_i = -\frac{1}{R_i} \left(\overline{f}_{sys} - \overline{f}_{nom} \right) \qquad \qquad R_i = R_0 \times \frac{E_{\max}}{E_i}$$

 $\frac{\Delta P_i}{\overline{f_{sys} - f_{nom}}} = -\frac{1}{R_i}, \quad i = 1, \dots, n$ 100 $R_0 = 2\%$ 80 60 R; (%) $\Delta \overline{E_i} R_i = -1 \qquad \Delta \overline{E_i} R_i = \Delta \overline{E_{\max}} R_0$ 40 20 $E_i = \frac{1}{2}J(\omega^2 - \omega_{\min}^2)$ 0.7 0.8 0.9 1.2 1.3 1.1 Rotor speed (pu)

 E_i : Kinetic energy to be released from WG_i

 E_{max} : Kinetic energy to be released from the WG operating in maximum rotor speed R_0 : Reference droop determined to the WG operating in maximum rotor speed

 ΔP

SG tripping at 40 s: 50 MW (10% of total consumption) Studied cases

		Wind speed (m/s)	Wind direction (deg.)
	1	9	0
	2	11	90
Control	al	gorithms in	the case

Input wind speed of WGs for each case (m/s)

Cas	se 1		Case 2				
8.3	7.5	6.6	7.4	7.4	7.4	7.4	
8.3	7.5	6.6	8.6	8.6	8.6	8.6	
8.3	7.5	6.6	9.6	9.6	9.6	9.6	
8.3	7.5	6.6	10.3	10.3	10.3	10.3	
8.3	7.5	6.6	11.0	11.0	11.0	11.0	

Algorithm	Features
Proposed	Assigning the rotor speed-based droop (R_i)
Conventional	Applying the same R to all WGs ($R=avg(R_i)$)
Only SGs	A 100 MW SG instead of the WPP
No inertial	Operating in MPPT control mode

9.0

9.0

9.0

9.0

9.0

Case 1: wind speed 9 m/s, wind direction 0°

System frequency (Prop./Conv./SGs/No inertial)

Ô

Rotor speed of 1st, 2nd WGs (Prop./Conv.)

Rotor speed of 3rd, 4th WGs (Prop./Conv.)

* NBFR (Nadir-based Frequency Response)=Capacity of tripped SG/Maximum frequency deviation ²²

Active power of a WPP (Prop./Conv./SGs/No inertial)

Case 2: wind speed 11 m/s, wind direction 90°

System frequency (Prop./Conv./SGs/No inertial)

۲

Rotor speed of 5th, 4th, 3rd WGs (Prop./Conv.)

Active power of a WPP (Prop./Conv./SGs/No inertial)

Rotor speed of 2nd, 1st WGs (Prop./Conv.)

 Frequency nadir Proposed: 59.52Hz
 Conventional: 59.49Hz
 SGs: 59.25Hz
 MPPT: 59.17Hz

NBFR

Proposed: 10.42MW/0.1Hz Conventional: 9.80MW/0.1Hz Only SGs: 6.67MW/0.1Hz No inertial: 6.02MW/0.1Hz

MEST - funded Advanced Research Ce

• Assigned R_i

- 5th, 4th, 3rd row: 2.0%, 2.4%, 3.1% 2nd, 1st row: 4.6%, 10.4%
- Average *R* Conventional algorithm: 4.5%

Conclusions

Inertial control of a WPP releasing more kinetic energy stored for WGs with a higher wind speed

Assigns the droop gain depending on the rotor speed
 Smaller/larger droop for the WG with larger/smaller rotor speed

Inertial control of a WPP can give more contribution than SGs by controlling the kinetic energy stored in the WGs

WG of 5 MW has similar kinetic energy to a SG of 100 MW

A power system with high wind penetration has larger system inertia in terms of frequency stability

Wind energy Grid-Adaptive Technologies

Email: yckang@jbnu.ac.kr

